Volver a Tecnología

LA ENERGÍA ELECTROSTÁTiCA

Trabajo y energía potencial electrostática

La idea de energía potencial, como forma de energía asociada a la posición de los cuerpos, está presente también en los campos eléctricos. Así, una carga q negativa situada en un punto P a una distancia r de otra carga central positiva Q acumula en esa posición una cierta energía potencial, energía que podría liberarse si se dejara en libertad, ya que se desplazaría hacia Q por efecto de la fuerza atractiva. Situarla de nuevo en la posición inicial supondría la realización de un trabajo en contra de la fuerza atractiva ejercida por Q. Este trabajo exterior a las fuerzas del campo se invierte precisamente en aumentar su energía potencial Ep y puede escribirse de la siguiente forma:

 Como sucede cuando se tira de un cuerpo sujeto a un muelle y a continuación se suelta, el trabajo eléctrico podría ser recuperado si la carga q se dejara en libertad, es decir, si no se la obligara a ocupar la posición definida por el punto P.

 Según la ecuación (9.5), el trabajo We tendrá el signo de DEp. Un desplazamiento de la carga q que suponga un aumento en su energía potencial, Ep(final) > Ep(inicial), corresponderá a un trabajo positivo, es decir, un trabajo realizado por fuerzas exteriores al campo. Por contra, un desplazamiento de q que lleve consigo una disminución de su energía potencial, Ep(final) < Ep(inicial), habrá sido efectuada por las fuerzas del campo con la realización de un trabajo negativo.

 Este criterio de signos considera el trabajo positivo cuando lleva asociado una ganancia de energía potencial y negativo cuando se efectúa a expensas de una disminución de la energía potencial de la carga considerada.

APLiCACiÓN DE LA RELACiÓN ENTRE TRABAJO Y DiFERENCiA DE POTENCiAL

Dado que la diferencia de potencial entre dos puntos de un campo eléctrico representa el trabajo necesario para trasladar la unidad de carga positiva de uno a otro punto, es posible utilizar los valores del potencial electrostático para calcular trabajos en el seno de los campos eléctricos.

 El campo eléctrico creado por una carga Q = 4 · 10-6 C situada en el vacío es tal que el potencial electrostático en un punto M que dista 3 m de Q es VM = 1,2 · 104 V y en otro punto N separado 2 m de la carga es VN = 1,8 · 104 V. Se trata de calcular el trabajo necesario para trasladar una carga q = - 2 · 10-8 C de M a N interpretando el signo resultante.

 La diferencia de potencial DV entre los puntos final e inicial viene dado por:

 Según la expresión

 el trabajo eléctrico necesario para trasladar una carga q distinta de la unidad será:

We = 0,6 · 104 · (- 2 · 10-8) = - 1,2 · 10-4 J

Donde el signo negativo indica que el trabajo es realizado, en este caso, por las fuerzas del campo. En efecto, dado que la carga q tiene signo opuesto a la carga central Q que se supone fija, la fuerza entre ambas será atractiva y el desplazamiento de q del punto M (más alejado) al N (más próximo) se efectuará espontáneamente.

Potencial electrostático en un punto

Del mismo modo que se introduce la noción de intensidad de campo eléctrico E para referir las fuerzas electrostáticas a la unidad de carga positiva, es posible hacer la misma operación con la energía potencial. Si se desea comparar, en términos de energías potenciales, un punto de un campo eléctrico con otro, será preciso utilizar en todos los casos como elemento de comparación una misma carga. La más sencilla de manejar es la carga unidad positiva y su energía potencial se denomina potencial electrostático. Surge así el concepto de potencial electrostático V en un punto P como la energía potencial eléctrica que poseería la unidad de carga positiva situada en dicho punto del campo.

 Por analogía con la ecuación (9.3) de la intensidad de campo, la expresión del potencial será:

Por tratarse de una energía por unidad de carga, el potencial será una magnitud escalar cuya unidad en el Si vendrá dada por el cociente entre el joule (J) y el coulomb (C). Dicho cociente recibe el nombre de volt (V):

UNA ECUACiÓN PARA EL POTENCiAL

Junto al concepto de potencial electrostático, es posible obtener, a partir de las magnitudes físicas implicadas en su definición, una expresión para la diferencia de potencial primero y para el potencial después. En el caso de que el campo sea debido a una carga puntual Q, la deducción de la ecuación potencial V en un punto genérico P sería como sigue.

 Sean O y P dos puntos del espacio que rodea a la carga Q, y rO y rP las distancias respectivas a dicha carga tomada como origen de referencia. El trabajo necesario para trasladar una carga q desde O a P corresponde a una fuerza variable con la distancia, pero puede descomponerse el trayecto en tramos lo suficientemente cortos como para considerar que en ellos la fuerza es constante; en tal caso:

donde los sumandos representan esos trabajos elementales.

De acuerdo con la definición de trabajo W = F · Dr y recordando que en este caso la fuerza F es la electrostática entre Q y q, se podrá escribir, recurriendo a la ley de Coulomb, la expresión:

 

donde r2 puede ser tomado como el producto r1 · rO, lo que equivale a considerar r como la media geométrico de las distancias extremas. Admitiendo esta aproximación resulta:

Análogamente:

y así sucesivamente hasta el último intervalo:

Sumando todos estos trabajos elementales se tiene:

En donde los términos intermedios contenidos entre el corchete se cancelan dos a dos, pues son iguales y de signo opuesto, resultando para el trabajo total:

Este trabajo, realizado por las fuerzas del campo, supondrá una disminución de la energía potencial de la carga q, de modo que se cumplirá la ecuación

de la diferencia de potencial entre O y P:

Si O se considera situado en el infinito respecto de la carga Q, la diferencia de potencial de cualquier otro punto respecto del infinito resultará:

Si por convenio se considera que el potencial V en el infinito es cero (lo que, además, parece razonable, pues la fuerza también se hace cero a esa distancia) resulta la expresión:

 

que representa el potencial electrostático del campo debido a la carga puntual Q en un punto que dista r de dicha carga.

Diferencia de potencial

Si el potencial eléctrico en un punto caracteriza desde un punto de vista energético ese punto del campo, su diferencia entre dos puntos dados está relacionada con la tendencia al movimiento de las cargas positivas entre ellos; por tal motivo se la denomina también tensión eléctrica. Comparando los movimientos de las cargas bajo la acción de un campo eléctrico con los de las masas por efecto de las fuerzas del peso, la diferencia de potencial entre dos puntos podría ser asimilada a la diferencia de altura o nivel. Las cargas positivas se desplazan espontáneamente por un campo eléctrico de los puntos de mayor potencial a los de menor potencial, del mismo modo que los cuerpos con masa caen desde los puntos de mayor altura. Las cargas negativas lo hacen en sentido contrario.

 Esta propiedad de la magnitud diferencia de potencial como responsable del sentido del movimiento de las cargas en el seno de un campo eléctrico puede ser deducida combinando las ecuaciones (9.5) y (9.6). El resultado es la nueva expresión:

De la ecuación anterior resulta un nuevo significado para la diferencia de potencial entre dos puntos como el trabajo necesario para trasladar la unidad de carga positiva de uno a otro punto.

 Pero, además, despejando We resulta:

siendo q la carga que se desplaza y DV la diferencia de potencial entre las posiciones extremas. Si q es positiva, una DV positiva (aumento del potencial) corresponderá a un trabajo We positivo, es decir, efectuado por agentes exteriores al campo, con lo que el movimiento de la carga q será forzado. Si DV es negativo (disminución del potencial), We también lo será, lo que indica que las fuerzas actuantes son las propias del campo, dando lugar a un movimiento espontáneo de la carga q positiva. En el caso de que q fuera negativa los criterios serían opuestos a los anteriores.

 La visualización de cómo varía el potencial de un punto a otro en un campo electrostático se efectúa recurriendo a la noción de superficie equipotencial como lugar geométrico de los puntos del campo que se encuentran a igual potencial. Su representación gráfica da lugar a una serie de superficies que, a modo de envolturas sucesivas, rodean al cuerpo cargado cuyo campo se está considerando. Cada una de ellas une todos los puntos de igual potencial.

 Aunque teóricamente habría infinitas envolturas, se representan sólo las que corresponden a incrementos o variaciones fijas del potencial eléctrico. Así se habla de la superficie equipotencial de 10 V, de 20 V, de 30 V, etc... Entre cualquier par de puntos de una misma superficie equipotencial, su diferencia de potencial es, de acuerdo con su definición, nula.

Volver a Tecnología